Ghost in the data
  • Home
  • About
  • Posts
  • Topics
  • Resources
  • Tags
  • AI
  • AI Agents
  • AI Business Applications
  • AI Communication
  • AI Concepts
  • AI Productivity
  • AI Prompting
  • AI Workflows
  • Ai-Tools
  • Airflow
  • Analytics
  • AnalyticsEngineering
  • Anonymization
  • Apache Airflow
  • Apache Iceberg
  • Athena
  • Automation
  • AVRO
  • AWS
  • BankingData
  • Bedrock Edition
  • BigData
  • Blue-Green Deployment
  • Budgeting
  • Business Case
  • Business Value
  • Business-Communication
  • Career Advice
  • Career Development
  • Career Growth
  • Chapter Lead
  • ChatGPT
  • CI/CD
  • Claude
  • Claude-Code
  • Cloud Computing
  • Cloud Gaming
  • Code Review
  • Communication
  • ConceptualDataModeling
  • Continuous Learning
  • ContinuousIntegration
  • CSV
  • Culture
  • Data Architecture
  • Data Culture
  • Data Engineering
  • Data Ethics
  • Data Governance
  • Data Impact
  • Data Ingestion
  • Data Leadership
  • Data Modeling
  • Data Modelling
  • Data Pipeline
  • Data Pipelines
  • Data Quality
  • Data Reliability
  • Data Solutions
  • Data System Resilience
  • Data Testing
  • Data Transformation
  • Data Validation
  • Data Vault
  • Data Warehouse
  • Data Warehouse Architecture
  • Database Design
  • DataDemocratization
  • DataEngineering
  • Datafold
  • DataGovernance
  • DataMinimization
  • DataModeling
  • DataPipelines
  • DataPrivacy
  • DataQuality
  • DataTools
  • DataValidation
  • DataWarehouse
  • Dbt
  • Decision Making
  • Delta-Lake
  • Development
  • Development Tools
  • DevOps
  • DimensionalModeling
  • Emergency Fund
  • Emotional Intelligence
  • EmpatheticDesign
  • Employee Engagement
  • Employee Productivity
  • Engineering Career
  • ETL
  • ETL Pipeline
  • Family Gaming
  • Feedback
  • File Formats
  • Financial Independence
  • Frameworks
  • GCP
  • GDPR
  • Git
  • GitBash
  • GitHub
  • GitHub Actions
  • Hiring Strategies
  • Incident Response
  • Industry Trends
  • Inspirational Quote
  • Intergroup Conflict
  • Interviews
  • Job Security
  • Journal
  • Journaling Techniques
  • JSON
  • Kimball
  • Lambda
  • Language Models
  • Leadership
  • LLM
  • LLM Interaction
  • MacOS
  • Management
  • Mental Health
  • Mentorship
  • Mindfulness Practices
  • Minecraft
  • Moral Development
  • Onboarding
  • One-on-One Meetings
  • OpenSource
  • ORC
  • Organizational Culture
  • Parquet
  • Performance Optimization
  • Personal Growth
  • Pipeline
  • PostegreSQL
  • Presentation-Skills
  • Problem Solving
  • Production Issues
  • Professional Development
  • Professional Growth
  • Professional-Skills
  • Promotion
  • Psychological Safety
  • Public-Speaking
  • Python
  • RAG
  • Recruitment
  • Redundancy
  • Remote Work
  • RequirementGathering
  • RetentionPolicies
  • Risk Management
  • Robbers Cave Experiment
  • ROI
  • Roleplaying
  • S3
  • Schema Evolution
  • Self-Awareness
  • Self-Reflection
  • Server Setup
  • ServiceDesign
  • ShadowIT
  • SQL
  • SQL Standards
  • Sql-Agents
  • Sql-Validation
  • SSH
  • SSH Keys
  • Staff Engineer
  • Stakeholder Engagement
  • Stakeholder Management
  • StakeholderManagement
  • Star Schema
  • Starburst
  • Strategy
  • Strengths
  • Success Habits
  • Talent Acquisition
  • Team Building
  • Team Collaboration
  • Team Enablement
  • Team-Management
  • Technical Assessment
  • Technical Leadership
  • Testing
  • Tools and Access
  • Trino
  • Trust Building
  • UserExperience
  • UV
  • UV Package Manager
  • Value Creation
  • Vector Databases
  • Virtual Environments
  • Visualization
  • Vocal-Techniques
  • Vscode
  • WAP Pattern
  • Windows
  • Workplace Communication
  • Workplace Relationships
  • Workplace Stress
  • Write-Audit-Publish
  • Zsh
Hero Image
Leveraging LLMs for Business Impact: Part 2 - Building an AI Data Engineer Agent

Introduction In Part 1 of this series, we explored the theoretical foundations of Large Language Models (LLMs), Retrieval Augmented Generation (RAG), and vector databases. Now, it’s time to put theory into practice. This is going to be a long read, so grab some coffee, and one (couple) of your favorite biscuits. One use case for leveraging LLM’s, is creating of a Agent - a Senior Data Engineer AI that automatically reviews Pull Requests in your data engineering projects. This agent will be that nit picky Data Engineer that enforces SQL formatting standards, ensure naming and data type consistency, validate data quality checks, and suggest improvements based on best practices. By integrating this into your GitHub workflow, you can maintain higher code quality, accelerate onboarding for new team members, and reduce the burden of manual code reviews.

  • GitHub Actions
  • CI/CD
  • AI Agents
  • Code Review
  • Data Quality
  • DBT
  • SQL Standards
Saturday, March 8, 2025 Read