Ghost in the data
  • Home
  • About
  • Posts
  • Topics
  • Resources
  • Tags
  • AI
  • AI Agents
  • AI Business Applications
  • AI Communication
  • AI Concepts
  • AI Productivity
  • AI Prompting
  • AI Workflows
  • Ai-Tools
  • Airflow
  • Analytics
  • AnalyticsEngineering
  • Anonymization
  • Apache Airflow
  • Apache Iceberg
  • Athena
  • Automation
  • AVRO
  • AWS
  • BankingData
  • Bedrock Edition
  • BigData
  • Blue-Green Deployment
  • Budgeting
  • Business Case
  • Business Value
  • Business-Communication
  • Career Advice
  • Career Development
  • Career Growth
  • Chapter Lead
  • ChatGPT
  • CI/CD
  • Claude
  • Claude-Code
  • Cloud Computing
  • Cloud Gaming
  • Code Review
  • Communication
  • ConceptualDataModeling
  • Continuous Learning
  • ContinuousIntegration
  • CSV
  • Culture
  • Data Architecture
  • Data Culture
  • Data Engineering
  • Data Ethics
  • Data Governance
  • Data Impact
  • Data Ingestion
  • Data Leadership
  • Data Modeling
  • Data Modelling
  • Data Pipeline
  • Data Pipelines
  • Data Quality
  • Data Reliability
  • Data Solutions
  • Data System Resilience
  • Data Testing
  • Data Transformation
  • Data Validation
  • Data Vault
  • Data Warehouse
  • Data Warehouse Architecture
  • Database Design
  • DataDemocratization
  • DataEngineering
  • Datafold
  • DataGovernance
  • DataMinimization
  • DataModeling
  • DataPipelines
  • DataPrivacy
  • DataQuality
  • DataTools
  • DataValidation
  • DataWarehouse
  • Dbt
  • Decision Making
  • Delta-Lake
  • Development
  • Development Tools
  • DevOps
  • DimensionalModeling
  • Emergency Fund
  • Emotional Intelligence
  • EmpatheticDesign
  • Employee Engagement
  • Employee Productivity
  • Engineering Career
  • ETL
  • ETL Pipeline
  • Family Gaming
  • Feedback
  • File Formats
  • Financial Independence
  • Frameworks
  • GCP
  • GDPR
  • Git
  • GitBash
  • GitHub
  • GitHub Actions
  • Hiring Strategies
  • Incident Response
  • Industry Trends
  • Inspirational Quote
  • Intergroup Conflict
  • Interviews
  • Job Security
  • Journal
  • Journaling Techniques
  • JSON
  • Kimball
  • Lambda
  • Language Models
  • Leadership
  • LLM
  • LLM Interaction
  • MacOS
  • Management
  • Mental Health
  • Mentorship
  • Mindfulness Practices
  • Minecraft
  • Moral Development
  • Onboarding
  • One-on-One Meetings
  • OpenSource
  • ORC
  • Organizational Culture
  • Parquet
  • Performance Optimization
  • Personal Growth
  • Pipeline
  • PostegreSQL
  • Presentation-Skills
  • Problem Solving
  • Production Issues
  • Professional Development
  • Professional Growth
  • Professional-Skills
  • Promotion
  • Psychological Safety
  • Public-Speaking
  • Python
  • RAG
  • Recruitment
  • Redundancy
  • Remote Work
  • RequirementGathering
  • RetentionPolicies
  • Risk Management
  • Robbers Cave Experiment
  • ROI
  • Roleplaying
  • S3
  • Schema Evolution
  • Self-Awareness
  • Self-Reflection
  • Server Setup
  • ServiceDesign
  • ShadowIT
  • SQL
  • SQL Standards
  • Sql-Agents
  • Sql-Validation
  • SSH
  • SSH Keys
  • Staff Engineer
  • Stakeholder Engagement
  • Stakeholder Management
  • StakeholderManagement
  • Star Schema
  • Starburst
  • Strategy
  • Strengths
  • Success Habits
  • Talent Acquisition
  • Team Building
  • Team Collaboration
  • Team Enablement
  • Team-Management
  • Technical Assessment
  • Technical Leadership
  • Testing
  • Tools and Access
  • Trino
  • Trust Building
  • UserExperience
  • UV
  • UV Package Manager
  • Value Creation
  • Vector Databases
  • Virtual Environments
  • Visualization
  • Vocal-Techniques
  • Vscode
  • WAP Pattern
  • Windows
  • Workplace Communication
  • Workplace Relationships
  • Workplace Stress
  • Write-Audit-Publish
  • Zsh
Hero Image
The Art and Science of Conceptual Data Modeling: Building Pipelines That Last

Introduction: Why Conceptual Data Modeling Makes or Breaks Your Pipeline Ever found yourself staring at a faulty data pipeline, wondering where it all went wrong? Join the club. I’ve been there too many times to count. The hard truth? Most pipeline failures aren’t technical issues—they’re conceptual ones. We get so caught up in the how (tools, languages, frameworks) that we completely miss the what and why of our data needs.

  • ConceptualDataModeling
  • DataEngineering
  • StakeholderManagement
  • EmpatheticDesign
  • DataPipelines
  • RequirementGathering
Saturday, May 17, 2025 Read