Ghost in the data
  • Home
  • About
  • Posts
  • Topics
  • Resources
  • Categories
  • AI Development
  • Analytics Engineering
  • Artificial Intelligence
  • AWS
  • Banking
  • Best Practices
  • Big Data
  • Business Technology
  • Career Development
  • Career Growth
  • Cloud Computing
  • Cloud Infrastructure
  • Communication
  • Conflict Resolution
  • Data Architecture
  • Data Culture
  • Data Engineering
  • Data Governance
  • Data Modeling
  • Data Modelling
  • Data Pipelines
  • Data Privacy
  • Data Quality
  • Data Storage
  • Data Warehousing
  • Database Design
  • Dbt
  • Delta-Lake
  • Development
  • Development Tools
  • DevOps
  • Employee Engagement
  • Gaming Servers
  • Google Cloud Platform
  • Hiring
  • IT Management
  • Leadership
  • Life Hacks
  • Mindfulness
  • Minecraft
  • Personal Development
  • Personal Finance
  • Pipeline
  • Pipeline Design
  • Productivity
  • Professional Development
  • Professional Growth
  • Promotion
  • Psychology
  • Python
  • Python Tools
  • Setup Guide
  • SQL
  • Stakeholder Management
  • Team Building
  • Team Culture
  • Team Management
  • Technology Trends
  • Tutorial
  • User Experience
  • Version Control
  • Workplace Dynamics
Hero Image
The Four Stages of Data Quality: From Hidden Costs to Measurable Value

This is the fundamental problem with data quality. You know it matters. Everyone knows it matters. But until you can quantify the impact, connect it to business outcomes, and build a credible business case, it remains this abstract thing that’s important but never urgent enough to properly fund. I wrote a practical guide to data quality last week that walks through hands-on implementation—the SQL queries, the profiling techniques, the actual mechanics of finding and fixing data issues. Think of that as the “how to use the tools” guide. This article is different. This is the “why these tools matter and how to convince your organization to actually use them” guide.

  • Data Quality
  • ROI
  • Business Case
  • Data Governance
  • Strategy
  • Frameworks
Monday, November 24, 2025 Read
Hero Image
When Your Data Quality Fails at 9 PM on a Friday

When everything goes wrong at once It’s 9 PM on a Friday. You’re halfway through your second beer, finally relaxing after a brutal week. Your phone buzzes. Then it buzzes again. And again. The support team’s in full panic mode, your manager’s calling, and somewhere in Melbourne, two very angry guests are standing outside the same Airbnb property—both holding confirmation emails that say the place is theirs for the weekend.

  • Data Quality
  • SQL
  • Database Design
  • Data Validation
  • Testing
  • Data Engineering
  • Production Issues
Saturday, November 22, 2025 Read
Hero Image
Continuous Integration for Data Teams: Beyond the Buzzwords

The Day Everything Broke (And How CI Could Have Saved Us) Picture this: It’s 9 AM on a Monday, and your Slack is exploding. The executive dashboard is showing impossible numbers. Customer support is fielding complaints about incorrect billing amounts. The marketing team is questioning why their conversion metrics suddenly dropped to zero. You trace it back to a seemingly innocent change you merged Friday afternoon—a simple column rename that seemed harmless enough. But that “harmless” change cascaded through your entire data pipeline, breaking downstream models, dashboards, and automated reports.

  • ContinuousIntegration
  • DataQuality
  • dbt
  • DevOps
  • DataEngineering
  • GitHub
  • Datafold
  • DataValidation
Saturday, June 28, 2025 Read